近日,佛罗里达大学的两位学者公布了一项最新研究,他们将 ChatGPT 融合在投资模型中以预测股市的走势,投资回报率能达到惊人的 500%。根据论文内容的介绍,模型首先会用 ChatGPT 深度分析上市公司发布的新闻标题、内容确定是好消息还是坏消息,然后对这些内容进行评级,再通过复杂的计算公式制成「ChatGPT 指数」,结合公司的实时股价进行比对,以验证 ChatGPT 的分析能力。

当然,面向变幻莫测的金融走势,打造出「AI 巴菲特」并没有那么容易。就目前来说,像「ChatGPT 指数」这种新方法只能作为决策过程中的一种参考。

不过,在金融投资领域,使用 AI 技术辅助决策确实是一个比较热门的方向,并且衍生出了一个专门的名词:量化交易。以基金趋势模拟预测为例,AI 能够对大量历史业绩等数据进行深入的分析,从中提取有用的特征,构建出具备高度泛化能力和市场动态适应能力的模型,从而在波动的市场条件下持续保持良好的预测表现。

量化模型需要具备对金融场景的深度理解能力,进行投资者情感分析和市场情绪预测,而这显然是 ChatGPT 所擅长的。半年来,在 ChatGPT 类产品的启发和推动下,量化交易和 AI 技术之间的火花进一步迸发。

与此同时,我们更关心的是,这场 ChatGPT 风暴又将如何从全局角度推动 AI 技术在金融领域的落地?

金融智能,走到哪一步了?

近年来,AI 技术在金融领域的运用正在不断加深,为金融行业的风控、营销、投顾、管理等业务注入了数字化的血液,为银行、保险、基金、券商等金融机构实现数智化转型提供了引擎动能。

从行业研判、投顾服务、保险理赔、到信贷风控,这些我们熟知的金融业务场景,背后都有机器学习、计算机视觉、自然语言处理等多项技术作为支撑。每一个应用场景衍生出的挑战是不同的,涉及到的技术方向也不尽相同。这些年,AI 技术也在持续演进,小样本学习、可信 AI、可解释 AI、AIGC 等新工具陆续涌现,尤其去年底,大模型技术彻底改变了人工智能技术的前沿图景,大模型能说会道的语言能力、压缩大量领域常识的知识能力,对数字化专业工具的推理调度能力无疑在金融行业里有广阔的应用空间,给我们带来挑战的同时,也打开了创新的可能空间。

那么,这些人工智能的新技术、新方法会在金融领域有何创新应用?此处,我们可以选择「金融数据验真」、「金融数据理解」、「金融场景理解」三个方向来谈谈最近的变化。

首先谈谈「金融数据验真」。数字金融业务的本质是基于数据和信息流转的价值交换,这些数据和信息的真实性和可靠性因此构成数字金融业务能否顺利进行的关键。例如,在数字支付场景下,用户支付凭证的真实性和可验证性直接关系到支付的安全和效率;在数字借贷场景下,借款人提供的个人借贷资料的真实性和可验证性则是判断其还款能力和风险等级的基础。

因此,在各类数字金融交易中,各类凭证和文档的验真手段是必不可少的,以保证其真实性和可靠性。特别是对非标文档篡改检测的探索,一直是工业界和学术界的重要研究方向。

金融文档中的文本包含大量重要和敏感信息,句子中的任何一个小改动都可能扭曲其承载的整体语义。随着 NLP 文本处理技术的发展,黑灰产业在欺诈、营销或其他非法活动中,利用计算机进行的虚假信息篡改愈演愈烈,因此,预防文档中的文本被篡改是至关重要的。

此前,图像篡改检测的技术研究对象集中于自然场景图像,大多依赖于物体边缘或表面相对明显的视觉篡改线索,而在文档中几乎不存在这种线索。原因如下:

  • 一是文档图像中的文本篡改方法相当多样:有的是拼接,即从一个图像中复制区域并粘贴到其他图像上;有的是复制 – 移动,即改变图像中物体的空间位置;还有的是生成,即用视觉上合理但不同的内容替换图像中的区域。
  • 二是篡改文本相比场景图像来说更加隐蔽。被篡改的文本区域可能非常小,比如一个段落中的一个字符;而且被篡改的区域和周围环境之间的对比度可能非常低,文档的图像大多具有相同的背景颜色,且文本通常具有相同的字体和大小。

相对来说,文本篡改检测方法的发展却还不够成熟。目前业界有一些是针对类如身份证、营业执照等结构化文档的算法工作,对于金融领域常见的各类资质证书、合同、报告等非结构化的文档篡改,传统的检测系统往往难以进行判定及修改内容定位。

针对文档图像篡改的检测难题,学术界提出了各种方法。有研究者引入图神经网络(GNN),在图注意力机制的帮助下检测文档图像中的篡改区域,但这种方法只对比较清晰、整洁的文件有良好的效果,比如如扫描文件。也有研究者使用双流 Faster-RCNN 网络,对图像进行端到端的训练以检测给定的篡改图像区域,然而这种类型的篡改线索大多存在于生成性篡改中,却很难在非常小的复制粘贴篡改中被找到。

在上述方法的启发下,文档篡改检测确实取得了很大进展。不过现有方法在遇到各种文档的复杂场景时,仍缺乏足够的鲁棒性和跨领域的泛化能力,还需进一步探索。

第二个值得关注的方向是「金融数据理解」。在理财、信贷、保险等现实金融业务场景中,提供金融业务服务的主体不仅要理解用户提供的多种模态数据,比如信贷自证材料数据、宠物险的宠物图片等,同时也需要结合领域结构化、非结构的数据生产出专业、可控的理财、保险、行研知识来解答用户的问题,为用户提供全流程数字化的金融服务。这一领域涉及的技术是众多的,计算机视觉、自然语言处理与生成、AIGC 等等。

从理解层面看,金融场景非结构化数据占比高,且种类多样,形态多样,异构性明显,比如信贷场景用户自证数据,行业认知研究的行业研报、公司财报,以及保险条款等等,多样性的文档结构、差异化的上下文语义环境带来对非结构化文档的知识结构化任务的挑战。同时,金融场景文档的专业性还导致了标注成本高、单一场景的样本量不足等问题。

在 ChatGPT 引燃 AI 圈之后,其背后的关键技术 In-context learning、Instruction tuning 和 CoT 引起了学术界高度关注,这些技术的巧妙运用,大幅增强了模型的通用性以及对下游任务的理解能力。也正因此,基于指令驱动的 NLP 多任务统一建模成为主赛道,零样本、小样本的场景性能得到极大提升。今年 3 月,能够识图的 GPT-4 发布,又让很多人惊艳了一番,并让更多人看到了「大模型×多模态」的巨大潜力。这些最新的技术方案,同样可以用于解决上述金融业务场景的数据理解挑战。

从生成层面看,随着金融科技的不断发展和应用,金融服务的专业度日益提高,对于内容生产的专业性和合规性也提出了更高的要求。一项特别的挑战在于,专业的知识和金融逻辑是金融领域内容生产的核心要求。但这恰恰对当前流行的 ChatGPT 型大模型构成较大挑战,大模型产出的内容要在金融领域真正应用,需要确保输出内容合规(符合监管要求)、专业(符合金融逻辑),严谨(不出现知识幻觉等事实性错误)。金融内容的智能生产,需要大模型的可信可控,能以合规、专业、严谨的标准对外输出。

此外,基于「金融场景理解」的技术应用命题也非常受到关注。AI 技术的革新,同样为这一方向的落地带来了加速度。就比如上文提到的「量化交易」,无论一位投资者采取什么样的投资策略,金融市场的波动都是可以依靠统计方法和编程预期的,专业的投资者往往会尝试预估自身的整体回报。此前已有许多基于计算机的算法和模型用于金融市场交易,时序信息提取、图学习、模型集成等机器学习技术在该类任务中均展现了巨大的应用价值。

从原理上说,「市场价格的波动受到理性和人类行为的共同影响」一引自《阿尔法经济学》,投资者不可避免地要对新闻资讯做出自己的判断和响应。比如,一位投资者发现苹果公司的股票价格会在出货量飙升之后出现大幅波动,如果想探寻其中的规律,投资者就可以构建一个模型,在苹果公司在股票市场的走势历史数据中寻找这种模式,并根据规律去决策。

通常来说,从越多的新闻中获取有效的事件表征,量化模型就越能辅助投资者采取更合理的决策。近年来,一些研究开始应用自然语言处理(NLP)技术来学习新闻事件的神经网络表征并基于此构建事件驱动的交易策略。

从去年开始,以 ChatGPT 为代表的大模型产品也成为了投资者寄予厚望的对象。大模型可以处理大量异构数据,如股票交易数据、宏观经济数据、公司财务报告等,同时还可以处理非结构化数据,如新闻报道、社交媒体信息等,全面提高预测结果的准确性。